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Abstract

Bioacoustic monitoring and classification of animal communication 
signals has developed into a powerful tool for measuring and monitor-
ing species diversity within complex communities and habitats. The high 
number of stridulating species among Orthoptera allows their detection 
and classification in a non-invasive and economic way, particularly in 
habitats where visual observations are difficult or even impossible, such 
as tropical rainforests. Major sound archives were queried for Orthoptera 
songs, with special emphasis on usability as reference training libraries 
for computer algorithms. Orthoptera songs are highly stereotyped, reliable 
taxonomic features. However, exploitation of songs for acoustic profiling 
is limited by the small number of reference recordings: existing song li-
braries represent only about 1000 species, mainly from Europe and North 
America, covering less than 10% of extant stridulating Orthoptera species. 
Available databases are fragmented and lack tools for song annotation and 
efficient feature-based searching. Results from recent bioacoustic surveys 
illustrate the potential of the method, but also the challenges and bot-
tlenecks impeding further progress. A major problem is time-consuming 
data analysis of recordings. Computer-aided identification software exists 
for classification and identification of cricket and grasshopper songs, but 
these tools are still far from practical for field application.

A framework for acoustic profiling of Orthoptera should consist of the 
following components: (1) Protocols for standardized acoustic sampling, 
at species and community levels, using acoustic data loggers for autono-
mous long-term recordings; (2) Open access to and efficient management 
of song data and voucher specimens, involving the Orthoptera Species File 
(OSF) and Global Biodiversity Information Facility (GBIF); (3) An infra-
structure for automatized analysis and song classification; and (4) Comple-
mentation and improvement of Orthoptera sound libraries using OSF as 
the taxonomic backbone and repository for representative song recordings. 
Taxonomists should be encouraged, or even obliged, to deposit original re-
cordings, particularly if they form part of species descriptions or revisions.
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Introduction

A considerable number of animal species produce species-spe-
cific sounds for communication, indicating their presence acousti-

cally. Among the most impressive examples are tropical rainforest 
insects, producing a huge variety of audible signals, while only 
very few can actually be seen (Riede 1993).

There is a long tradition in ornithology of identifying birds by 
their songs (Parker 1991). Acoustic assessment forms part of reg-
ular censusing (reviewed by Brandes 2008), or targeted searches 
for flagship species such as the Ivory Woodpecker (Swiston and 
Mennill 2009). Efficiency and reproducibility of human observers 
can be increased considerably by using powerful directional mi-
crophones in combination with cheap portable sound recording 
devices and bat detectors, allowing monitoring of high frequency 
or even ultrasound signals (reviewed by Obrist et al. 2010, p. 79). 
Several research groups developed sophisticated autonomous 
sound recording and automated classification techniques, facilitat-
ing monitoring and inventorying of birds (Haselmayer and Quinn 
2000, Celis-Murillo et al. 2009; but see Hutto and Stutzman 2009, 
for a discussion of limitations), whales (Širović et al. 2009), bats 
(Jennings et al. 2008), frogs (Hu et al. 2009), crickets (Riede 1993, 
Nischk and Riede 2001, Riede et al. 2006), bushcrickets (Penone 
et al. 2013) and grasshoppers (Chesmore and Ohya 2004, Gar-
diner et al. 2005).

Due to their small size, high species diversity, strong popu-
lation fluctuations, and cryptic lifestyles, insects are particularly 
difficult to monitor, requiring expensive and frequent sampling 
of specimens (Gardner et al. 2008). The species-specific songs of 
Orthoptera enable detectability by acoustic monitoring. With the 
help of adequate equipment, recordings can be used for discov-
ery of hitherto undescribed, “new” species, detection of endemics, 
non-invasive mapping of species abundances and ranges (Penone 
et al. 2013), and rapid assessment of community structure and 
species turnover (Forrest 1988), particularly in complex habitats 
with low visibility (Riede 1993, Diwakar et al. 2007, Schmidt et 
al. 2013). At present, information on phenology, activity patterns, 
abundance, and community structure is only available for a very 
small number of insects, but is urgently needed to document po-
tentially dramatic effects of climate change and changing land use 
patterns on insect communities (Garnas 2018, Maurer et al. 2018). 
The high number of stridulating species among the Orthoptera is 
both an opportunity and a challenge for compiling these highly 
needed datasets by acoustic profiling.
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Besides species discovery, the potential of acoustic monitor-
ing for Environmental Impact Assessments and Red Listing of Or-
thoptera is evident. Cordero et al. (2009) recognized and mapped 
the rare and endangered silver-bell cricket Oecanthus dulcisonans 
Gorochov, 1993 by its song. On the island of Réunion, several 
endemic crickets are indicator species for native forest, and acous-
tic monitoring was applied successfully to survey a reforestation 
program (Hugel 2012). The strong high-frequency components of 
bushcricket songs allow separation from ambient noise by high-
pass filtering. Due to their strong ultrasound components, Penone 
et al. (2013) were able to map singing specimens along roadsides 
in France, using ultrasound bat recorders.

Several bioacoustic monitoring studies focusing on Orthoptera 
applied (semi-)automatic identification (Fischer et al. 1997, Gar-
diner et al. 2005) illustrating the potential of the method. How-
ever, there are severe challenges impeding further progress. Among 
these are the lack of baseline data (Lehmann et al. 2014) for the 
respective region where acoustic monitoring is planned. Lists of 
candidate species are missing for most regions of the world, even 
for the comparatively well-known European fauna. Another bot-
tleneck is the lack of well-curated song reference libraries, which 
will be the main topic of this paper. 

Comprehensive song libraries are paramount for acoustic pro-
filing of entire communities, either machine-based or relying on 
human expertise. At present, there is not even a simple identifica-
tion tool for unknown Orthoptera songs. The vision is to upload a 
sound recording to a data warehouse portal and search for similar 
acoustic patterns, comparable to the Basic Local Alignment Search 
Tool (BLAST, Altschul et al. 1990), available as a tool in genetic 
databases (e.g. National Center for Biotechnology Information 
(NCBI), http://blast.ncbi.nlm.nih.gov/Blast.cgi). However, this re-
quires comprehensive databases. Upload of sequence data to Gen-
Bank is a pre-requisite for publication in peer-reviewed journals 
(see editorial policies for data sharing and submission guidelines 
of major journals, e.g. https://journals.plos.org/plosgenetics/s/
submission-guidelines#loc-accession-numbers). As a result, we 
now have comprehensive repositories for gene sequences. As will 
be shown below, Orthoptera song libraries are far from compre-
hensive. An editorial policy of obligatory submission of original 
sound files to selected sound libraries would rapidly improve cov-
erage of existing sound repositories, which is a necessary condi-
tion for progress of computer-aided species identification. 

This article explores several acoustic archives and their pros 
and cons as a possible repository for song reference recordings, 
based on data-mining of existing online sound repositories for Or-
thoptera songs. By analyzing the lessons learnt, I present a strate-
gic framework for establishing acoustic profiling as a core element 
of future automatized monitoring schemes, targeting all vocaliz-
ing animals within entire soundscapes.

Present knowledge of Orthoptera songs and coverage in 
sound repositories

The analysis of insect sounds started with simple, descriptive 
verbal descriptions and musical annotation, pioneered by Scud-
der (1868) for North American and Yersin (1854) for European 
grasshoppers (reviewed by Ragge and Reynolds 1998: p. 64). Faber 
(1953) focused on their function for intraspecific communication, 
with elaborate verbal transcriptions of songs and entire behavioral 
sequences, including optical displays. Research about female at-
traction – phonotaxis – elicited by these stereotyped songs has a 
long history, reviewed by Weber and Thorson (1989). Some crick-

ets and several gomphocerine grasshopper species were used as 
model organisms for sophisticated neuroethological and biologi-
cal experiments to unravel underlying neural circuitry (for Gryllus 
bimaculatus, G. campestris: Weber and Thorson 1989, Schöneich et 
al. 2015; for Acrididae: Roemer and Marquart 1984, Helversen and 
Helversen 1998, Ronacher and Stumpner 1988). 

It is now widely demonstrated that most Orthoptera songs 
are inborn, stereotyped and species-specific, providing reliable 
taxonomic features. Most species exhibit a maximum of only 
three distinct song types: calling, courtship, and rival song, de-
pending on the behavioral context. Striking differences in calling 
song structure of morphologically similar species helped taxono-
mists to diagnose and describe “cryptic species”, many of which 
cannot be determined without a sound recording. In a seminal 
paper, Walker (1964) reviewed studies on songs and taxonomy 
of North American Orthoptera, searching for eventual cryptic 
species. He concluded that “approximately one-fourth of the spe-
cies of gryllids and tettigoniids of the eastern United States had 
never been recognized or had been wrongly synonymized.” (l.c., 
p. 346). His discovery and description of “virtuoso katydids” (uh-
leri group of the genus Amblycorypha: Walker 2004a) corroborated 
this prediction.

Regional faunistic surveys including songs were pioneered by 
Pierce (1948) and Alexander (1956) for North American crick-
ets, Otte and Alexander (1983) for Australian crickets, and Heller 
(1988) for European Tettigonioidea. Each of these studies pro-
vided graphic representations and comparative analysis of acous-
tic signatures for hundreds of species, highlighting pronounced 
interspecific differences in frequency composition and temporal 
structure.

Original recordings are available for only a small fraction of 
these pioneer studies, as analog tapes or on CD (see below). In any 
case, most authors published basic song parameters and graphic 
representations revealing frequency composition (spectrograms 
and power spectra) and temporal structure (oscillograms, cf. Fig. 
1). These parameters could eventually be used as preliminary 
proxies in annotated repositories, and later be supplemented by 
song recordings.

An adequate analysis of Orthoptera songs cannot be achieved 
by the unaided human ear but requires visualization and tempo-
ral analysis by signal analysis software. A wide variety of programs 
is now available for personal computers (for an extensive list see 
Obrist et al. 2010), including the RavenViewer plug-in for the Fire-
fox web-browser, allowing online analysis (Fig. 1).

Particularly for tropical Orthoptera, reliable species identifi-
cation is only possible by determination of a collected voucher 
specimen, which often turns out to be an unknown species in 
need of taxonomic description. Therefore, most tropical Orthop-
tera are caught and recorded in captivity, to establish a reliable 
cross-reference between voucher specimen and recording. Besides 
essential parameters like time, recordist, etc. (cf. Table II in Ranft 
2004), temperature must always be annotated because temporal 
patterns of Orthoptera songs depend considerably on temperature 
(“Dolbear's law”: Dolbear 1897, Frings and Frings 1962). 

Older recordings and state of digitization.—The history of analog re-
cordings starts in 1889, and major archives of wildlife recordings 
go back to the 1940s (for a historical synopsis see Ranft 2004). 
Targeted recording of individual specimens with directional mi-
crophones and portable (albeit heavy) tape recorders was the 
standard methodology during the 20th century, resulting in im-
pressive analog tape archives which often remained with the re-

http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://journals.plos.org/plosgenetics/s/submission-guidelines#loc-accession-numbers
https://journals.plos.org/plosgenetics/s/submission-guidelines#loc-accession-numbers
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searcher. There is a high risk of loss of these valuable collections 
due to deterioration and misplacement (Marques et al. 2014).

Microphones and recording apparatuses varied widely due to 
considerable technological changes during the last decades, evolv-
ing from analog tape recorders to digital recording. The frequency 
spectrum of many Orthoptera reaches far into the ultrasound, 
with the recently described, hitherto highest-pitched katydids of 
the Neotropical genus Supersonus reaching up to 150 kHz (Sar-
ria-S et al. 2014). During the 20th century, analog recording of 
ultrasound song components required special microphones and 
expensive high-speed tape recorders (see materials and methods 
in Morris 1980, Morris and Beier 1982, and Morris et al. 2018). 
Today, common digital recorders with built-in microphones and 
96 kHz sampling rate cover a frequency range up to 30 kHz with 
sufficient quality. In addition, there is an increasing number of 
ultrasound recording devices and “bat detectors”, reaching far into 
the ultrasound up to 300 kHz (see Obrist et al. 2010, p. 79), facili-
tating classification of tettigoniid songs in the field. 

Since the 1990s, most monographs compiling Orthoptera 
songs were backed up by recordings on CD, serving as potential 
acoustic determination guides and targeting a wider audience. 
Compilations are available for most European (Ragge and Reyn-
olds 1998), Italian (Fontana et al. 2002), Central European (Bell-
mann 1993), Australian Orthoptera (Rentz 1996), and Costa Ri-

can katydids (Naskrecki 2000). A comprehensive compilation of 
Japanese Orthoptera songs on two CDs forms part of an illustrated 
guide to Orthoptera (Murai 2015). Note that a CD is already a 
digitized recording, usually of high quality. Due to copyright rules, 
most of these recordings are not publicly available. Nevertheless, 
they usually can be used for research purposes, analysis and fea-
ture extraction.

Several well-organized sound libraries house more than hun-
dreds of thousands of catalogued analog tape recordings of vocal-
izing animals, such as the Tierstimmenarchiv Berlin (http://www.
tierstimmenarchiv.de/), British Library Sound Archive's wildlife 
collection (https://www.bl.uk/collection-guides/wildlife-and-en-
vironmental-sounds), or the Macaulay Library of Sounds (Cornell 
Lab (2017) http://macaulaylibrary.org/). The latter provides more 
than 402,720 playable audio files, and even permits spectrograph-
ic online visualization using RavenViewer as a free browser plugin 
(cf. Fig. 1). With more than 40,000 animal sound recordings, the 
Borror Laboratory of Bioacoustics archive (http://blb.osu.edu/da-
tabase/; Ohio State University) is among the smaller archives, but 
contains important historic Orthoptera recordings by R. Alexan-
der and D. Borror, including the few available recordings of North 
American grasshoppers (Acrididae).

Besides the major sound archives reviewed below, there are 
important regional archives (reviewed for Latin America by Ranft 

Fig. 1. Web-based sound analysis tool for the Macaulay Sound Library, Cornell Lab (https://www.macaulaylibrary.org). Macaulay 
Library provides more than 400,000 playable audio files (http://macaulaylibrary.org/index.do), and even permits spectrographic on-
line visualization using RavenViewer as a free browser plugin (http://www.birds.cornell.edu/brp/software/sound-analysis-tools). The 
example shows a recording of a Virtuoso katydid by T. Walker, who provided most of the Orthoptera sound recordings for this sound 
library. For further details, see text.

http://www.tierstimmenarchiv.de/
http://www.tierstimmenarchiv.de/
https://www.bl.uk/collection-guides/wildlife-and-environmental-sounds
https://www.bl.uk/collection-guides/wildlife-and-environmental-sounds
http://macaulaylibrary.org/
http://blb.osu.edu/database/
http://blb.osu.edu/database/
https://www.macaulaylibrary.org
http://macaulaylibrary.org/index.do
http://www.birds.cornell.edu/brp/software/sound-analysis-tools
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2004 in Annex II) and new initiatives such as the sound library of 
the Museum National d'Histoire Naturelle (La sonothèque: htt-
ps://sonotheque.mnhn.fr/). A list of links to major sound libraries 
is provided by the International Bioacoustic Council (IBAC 2018).

Digital availability of sound recordings.—Digitization of existing 
analog recordings in most major sound archives is under way, but 
there are distinct policies on use and access via the World Wide 
Web (Baker et al. 2015). At present, most major sound archives 
provide searchable catalogues of all audio, offering public access 
to and download options for digitized recordings, under varying 
license agreements. In some cases, scientific re-use is limited be-
cause sound files are made available in compressed formats such 
as mp3 (ISO/IEC 11172-3:1993).

The following comparison of major sound archives focuses 
on the number of accessible Orthoptera songs, number of spe-
cies, and taxonomic compatibility with the Orthoptera Species 
File (OSF; Cigliano et al. 2018), as well as user-friendliness of web 
interfaces. Connectivity with the Global Biodiversity Information 
Facility (GBIF: http://www.gbif.org) was analyzed by a GBIF query 
for “Orthoptera”, adding “audio” multimedia type as additional 
filter criterion. The number of Orthoptera recordings and species 
for these major sound archives is summarized in Table 1, includ-
ing comments on accessibility and particular issues. Archives dif-
fer considerably in taxonomic and geographic coverage. Most ar-
chives have several recordings for each species, and each archive 
has strengths and weaknesses summarized in the last column.

While all databases allow extraction of the number of Orthop-
tera recordings, information about the number of species was not 

always available. Therefore, it was queried from a table downloaded 
from GBIF (2015). A close inspection reveals three major contribu-
tors: Borror Lab, Animal Sound Archive (= TSA), and ZFMK DOR-
SA. Note that GBIF accesses data providers dynamically and the 
number of records is increasing daily. While the GBIF (2015) data-
set contained 3973 occurrences, a more recent Orthoptera/Audio 
search (GBIF 2017) resulted in 4803 occurrences from 119 species. 

Major sound libraries focus on vertebrates, particularly birds, 
containing few insect recordings. In contrast, SINA (Walker 
2004b), OSF (Cigliano et al. 2018) and SYSTAX (SysTax 2017) 
focus exclusively on Orthoptera. The SYSTAX-DORSA (2017) vir-
tual museum is a repository dedicated to Orthoptera types, song 
recordings, pictures, and voucher specimens from German insti-
tutions and private collections. This database includes 2229 type 
specimens documented by approximately 25,000 images (Fig. 2). 
As part of a major digitization initiative funded by the German 
Research ministry, analog tapes from widely scattered institution-
al and private sound archives have been digitized (Ingrisch et al. 
2004) and made accessible at http://www.systax.org and via GBIF 
(2017). The digitization of historic analog tapes of ultrasound 
recordings was particularly challenging, because the appropriate 
tape recorders for their reproduction are becoming rare.

In summary, accessibility of Orthoptera song recordings in any 
format is extremely limited. With a total of 26,000 described Or-
thoptera species of which a (conservatively!) estimated 10,000 are 
able to stridulate, we have web access to song recordings for about 
1000 species, i.e. coverage of a meagre 10% of all stridulating Or-
thoptera species. Adding another 1000 songs scattered in publi-
cations, CDs, books and private collections, we might have song 

Table 1. Digitized Orthoptera songs in major sound archives and databases. For further details on issues and special features see text.

Archive1 N Orthoptera 
recordings

N taxa Taxa Geographic focus Orthoptera 
fauna

Issues and special features

Macaulay 
Cornell Lab

9,282 2622 All animals; Ensifera North America + Raven viewer for sound visualization
+ Basket function for download, annotations
(+) GBIF federation with issues
– no voucher cross–reference
– Temperature missing or comment only

SYSTAX–
DORSA

8,6693 550 Orthoptera Europe (Ecuador, South East 
Asia)4

+ Additional user interfaces via Europeana
(+) GBIF federation with issues
+ Additional user interfaces
– uploads difficult; completed archive
– Temperature in commentary 

Tierstimmen–
archive

1,093 66 All animals; Orthoptera World–wide, mainly Europe + Full GBIF federation
– no voucher cross–reference
– temperature missing or hidden in text

BioAcoustica5 2,358 556 Orthoptera World–wide, mainly Europe + Graphic display of standard sound analysis
+ Rapidly growing, allowing user uploads
(+) GBIF federation with issues

Borror Sound 
Archive

1,761 119 All animals; Orthoptera North America, Australia + full GBIF federation

SINA n.a. (440)6 Ensifera North America + Species fact sheets with sonagrams and songs for download
+ full tables of song parameters for download7

+ cross–reference to voucher
– no database query interface
– GBIF

Orthoptera 
Species File

n.a. 7768 Orthoptera World–wide + well–curated, up–to–date taxonomic backbone
(+) providing links to additional resources
– temperature hidden in commentary

GBIF9 4,803 119 Orthoptera World–wide – double–entries of specimens from distinct data providers but 
identical primary source

1 See References for web addresses and extraction date. 2 Calculated using GBIF download GBIF Occurrence Download 10.15468/dl.xsud5i 3 Riede K, Ingrisch S, Jahn O 
(2013). 4 See map at http://www.gbif.org/dataset/72309d40–0c1f–47d6–8008–33e687b7df7a 5 http://bio.acousti.ca/analyses. 6 Estimate using complex OSF search for North 
American Ensifera AND link, most links leading to SINA species fact sheets. Note that not all SINA pages contain a sound recording. 7 Full workbook: http://entnemdept.
ifas.ufl.edu/walker/Buzz/g610ms3.htm showing temperature–dependence of song parameters. 8 Including subspecies. 9 GBIF Occurrence Download doi:10.15468/dl.psq6q1 
accessed via GBIF.org on 03 Nov 2017 

https://sonotheque.mnhn.fr/
https://sonotheque.mnhn.fr/
http://www.gbif.org
http://www.systax.org
http://www.gbif.org/dataset/72309d40%E2%80%930c1f%E2%80%9347d6%E2%80%938008%E2%80%9333e687b7df7a
http://bio.acousti.ca/analyses
http://entnemdept.ifas.ufl.edu/walker/Buzz/g610ms3.htm
http://entnemdept.ifas.ufl.edu/walker/Buzz/g610ms3.htm
https://doi.org/10.15468/dl.psq6q1
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data for about 2000 species, which is still only 20% of all known 
stridulating species. If we assume that another 20,000 Orthoptera 
species still remain to be described (again, a conservative estimate, 
cf. Stork et al. 2015), we get an idea of the daunting task ahead!

Accessibility of new digital recordings.—The amount of multimedia 
data documenting animal songs is growing exponentially thanks 
to Passive Acoustic Monitoring (PAM) and citizen science efforts 
(cf. August et al. 2015, Di Minin et al. 2015). In addition, behav-
ior and song recordings can be found on YouTube (see Olivero 
and Robillard 2017, for cricket behavior “in the wild from You-
Tube”) or as digital supplementary material for scientific journals. 
In a letter to Science, Toledo et al. (2015) suggested that scientific 
journals require deposition of sound files used in publications. 
Submitting sound as additional online material for publications 
is certainly a step forward, but will lead to further fragmentation, 
with valuable sound recordings hidden as supplementary material 
behind journal paywalls, or distributed over a wide variety of on-
line repositories such as Figshare, Dryad, etc. Instead, a long-term, 
sustainable archival strategy should be centered around memory 
institutions, which in general have a longer half-life than states 
or private companies. Therefore, Riede and Jahn (2013) suggested 
that researchers submit sound recordings and well-annotated cor-
pora to a few well-established memory institutions, comparable to 
common practice in genetics.

 Traditional targeted song recordings of individual Orthoptera 
species have now been complemented by acoustic profiling using 
entire soundscapes (sensu Schafer 1994). Soundscapes are recorded 
routinely for environmental monitoring (Szeremeta and Zannin 

2009) or military uses (Ferguson and Lo 2004). A huge number of 
recordings is generated by PAM. Following a definition of Marques 
et al. (2013), PAM “refers loosely to methods using sounds made 
by animals to make inferences about their distribution and occur-
rence over space and time.” (l.c., p. 290). There is a rapidly in-
creasing number of acoustic monitoring initiatives recording over-
all soundscapes by Autonomous Recording Units (ARUs), using 
custom-built or commercial equipment. Acoustic monitoring by 
microphone arrays is a rapidly developing field, allowing exact 3D 
mapping of the position of songsters, reviewed by Blumstein et al. 
(2011). PAM focusses either on endangered vertebrate species or 
entire soundscapes. 

Soundscape projects generally do not even try to identify or 
assess species compositions, but rather measure overall indices. 
Sueur et al. (2008b) applied signal analysis to entire soundscapes 
recorded at Tanzanian coastal forests, measuring entropy as a sur-
rogate for biodiversity richness. Further recordings were made at 
biodiversity hotspots in New Caledonia and French Guiana (re-
viewed in Sueur et al. 2014). Such overall bioacoustic indices do 
not provide information about actual Orthoptera species presence 
and diversity, but informative snippets could be extracted (Riede 
and Jahn 2013, Lehmann et al. 2014). This means that post-hoc 
analysis for Orthoptera presence/absence at an ever-increasing 
number of acoustic monitoring sites is possible, if soundscape re-
cordings would be made available for re-analysis. 

The generated data volume is huge, and in most cases not pub-
licly accessible or, as is the case for microphone arrays, not stored 
at all. Terabytes of acoustic recordings are stored on researchers’ 
hard disks, with a high risk of getting lost, thereby impeding the 

Fig. 2. The SYSTAX database. Screenshot of the new SYSTAX user interface, to be released under www.systax.org. A search for the Neo-
tropical tettigoniid genus Anaulacomera recovers several sound recordings from a voucher specimen of a hitherto undescribed species, 
documented by photographs. Faceting allows searching by images or sounds exclusively.

http://www.systax.org
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chance for re-analysis. Only a small number of projects maintain 
servers to release soundscape recordings for re-analysis. Mainte-
nance and release of soundscape data will provide opportunities 
and future challenges, as well as valuable data sources for orthop-
terists, because most PAM recordings from rainforests are domi-
nated by insects, and Orthoptera in particular (Aide et al. 2017). At 
present, the Purdue soundscape server provides unlimited access 
to an impressive number of high-quality recordings (Pijanowski 
et al. 2011, Purdue Sound Ecology Project 2015). The extensive 
soundscape collection of Krause (2017) is commercial, but never-
theless available for Orthoptera song data mining.

Improving data coverage and requirements for data sharing 

Improving data coverage.—The number of species covered by each 
database presented in Table 1 is not cumulative because there is 
a strong overlap between DORSA, Tierstimmenarchiv, and OSF, 
with a strong focus on European species. Exact numbers on SINA 
(Walker 2004b) are not available, and not every link from OSF to 
SINA leads to a sound recording. SINA is restricted to North Ameri-
can Ensifera, while Caelifera remain uncovered, apart from some 
very few historic acridid recordings from the Borror sound archive. 
For the time being, the best available documentation of North 
American acridid songs are verbal descriptions and musical anno-
tations by Scudder (1868) and spectrogram figures published by 
Otte (1981). In light of the incomplete coverage of available sound 
libraries, filling the gaps for Orthoptera species without any song 
recording should have highest priority. Because OSF (Cigliano et al. 
2018) is a taxonomic hub for all Orthoptera taxa, uploading at least 
one recording per species would be the most straightforward and 
efficient way to monitor progress of Orthoptera song coverage and 
store at least one song recording and/or parameter for each species. 
The orthopterist community is small and given the excellent com-
munication between OSF curators and authors, the easiest way to 
increase the OSF song repository would be by proactive encourage-
ment of authors to deposit their available recordings in OSF.

For most species with a SYSTAX-DORSA recording, a “typical” 
song has already been transferred to OSF, which presently contains 
songs for 818 species and subspecies (Cigliano et al. 2018). With 
a considerable number of recordings imported from DORSA, OSF 
has a similar bias towards European species. The addition of songs 
from newly described species will sooner or later compensate 
this imbalance, but incorporation of songs from newly described 
species grows slowly: According to a “complex search” (“sounds” 
AND “description date >=2014”, extracted 6/9/2015) in OSF, from 
the 857 recent species described since 2014, only eight sound re-
cordings found their way into OSF: two Neoxabea spp. and three 
Oecanthus spp. described in Collins et al. (2014), Tettigonia bal-
canica Chobanov and Lemonnier-Darcemont, 2014 (Chobanov et 
al. 2014), and two Typophyllum spp. described by Braun (2015). For 
others (e.g. Walker and Funk 2014, Hemp et al. 2015, Baker et al. 
2017) the publications contain detailed song descriptions, while 
the songs are either deposited outside OSF, or are not accessible at 
all. However, OSF already contains links, e.g. to Walker and Funk's 
(2014) recordings, and it would be a comparatively easy task to 
transfer additional songs to OSF. Likewise, editors of Orthoptera 
song CDs (e.g. Rentz 1996, Naskrecki 2000) are actively involved 
in the enrichment of OSF and are probably disposed to contribute 
their CD recordings. 

Problems of data sharing and file exchange.—At present, federated 
bioacoustics datasets downloaded from GBIF have issues result-

ing from unresolved problems between data providers and GBIF. 
Macaulay (Scholes 2015), Systax (2017) and BioAcoustica (Baker 
and Rycroft 2017) are registered, citable GBIF data providers, but 
occurrences disappear once the multimedia audio filter is applied. 

In addition, downloading sound files from currently available 
repositories leads to disintegration of sound file and sound meta-
data. The safest way to avoid such disintegration is to store meta-
data within the sound file – typically, a spoken announcement 
by the recordist often contains information about time, place, 
temperature, microphone, and recording conditions. However, if 
this information is clipped for the sake of signal clarity and detect-
ability, a downloaded sound file cannot be attributed to its source 
and metadata. For SYSTAX-DORSA sound files, the Soundminer 
software (http://store.soundminer.com/) was used to annotate 
metadata, showing species name and source when displayed on 
most devices (Fig. 3).

Embedding metadata within the sound file creates redundancy 
which can be used to restore or cross-check the links between the 
original database storing the metadata and the multimedia object.

Future needs: a data warehouse for bioacoustic data

A combination of features from all databases reviewed here 
probably describes best the requirements for an ideal Orthoptera 
song data warehouse. In particular:
·	 Baseline collection data such as recordist, time, and locality.
·	 Cross-reference to voucher specimen, if available: repository 

(e.g. museum collection), unique identifier (collection num-
ber), identifier, and baseline data.

·	 If no voucher specimen is available, an image, video and com-
ments on taxonomic reliability by naming the identifier.

·	 Comprehensive metadata for each recording, in particular 
temperature, microphone with frequency characteristics and 
distance from specimen, and preferably sound intensity at a 
given distance.

·	 User-friendly upload and query interface for input.

On the output side users need:
·	 Advanced search functions.
·	 Basket function for download of selected songs and/or cor-

pora, including metadata.

Optional requirements include online visualization of 
sound files (spectrogram/oscillogram), generation of bioacoustic 
factsheets, and flexible tools for annotation of song parameters.

Building on these basic features, a bioacoustics workbench 
could provide efficient, reciprocal connection to taxonomic (OSF) 
and specimen-based federated specimen databases (GBIF).

None of the existing databases fulfill all these requirements. 
Therefore, the way forward is interoperability and the federation 
of existing multimedia databases. Commercial or community 
multimedia providers like the pioneering peer-to-peer filesharing 
program Napster (https://en.wikipedia.org/wiki/Napster), iTunes, 
or SoundCloud (https://soundcloud.com/) demonstrate that ef-
ficient, user-friendly data management and federation of sound 
files is feasible, but not designed for scientific use, requiring an-
notation, citability and sustainability of repositories. GBIF feder-
ates specimen data. It allows filtering for audio data, providing 
multimedia links, but without any interface for direct listening or 
bulk download via shopping basket functions. However, GBIF is 
evolving rapidly and is attentive to users’ needs. Among the exist-
ing sound libraries, BioAcoustica (http://bio.acousti.ca/, Baker et 

http://store.soundminer.com/
https://en.wikipedia.org/wiki/Napster
https://soundcloud.com/
http://bio.acousti.ca/
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al. 2015) comes closest to the requirements outlined above due to 
its modular design using cutting-edge technology.

A scheme illustrating elements and workflows of a bioacous-
tics data warehouse is presented in Fig. 4. A fully developed bio-
acoustic workbench should allow seamless integration of entire 
soundscape recordings (as generated by PAM) and tools for man-
aging acoustic scenes, with software for annotation and identifica-
tion of acoustic snippets (cf. Riede and Jahn 2013), and reference 
corpora generated from targeted recordings with taxonomically 
identified voucher specimens.

A well-designed data warehouse infrastructure is the only way 
to organize efficient workflows between taxonomists (providing 
reference sound libraries) and computer scientists developing al-
gorithmic recognition tools. Ideally, code and documentation of 
recognizer software should be publicly accessible through the (vir-
tual) data warehouse, together with the sound libraries and refer-
ences to voucher specimens. For the time being, it is suggested to 
establish OSF as a taxonomic backbone to host at least one song 
recording per species, which would allow for verifying complete-
ness of bioacoustic coverage of singing Orthoptera species. Every 
sound file could be associated with a unique Life Science Identifier 
(LSID), comparable to Digital Object Identifiers (DOI), facilitat-
ing the necessary cross reference between names, multimedia files, 
voucher specimens, and eventually genetic sequences. However, 

at present, a functional LSID architecture is jeopardized by lack of 
standards (cf. Table 1 in Guralnick et al. 2015).

The way forward: algorithms for acoustic profiling	

Well-documented, comprehensive song libraries are the pre-
requisite for the next logical step, which is acoustic profiling of en-
tire communities. This is particularly promising for lesser known 
tropical faunas, where acoustic recording could accelerate species 
assessment. Up to now, overall analysis of Orthoptera communi-
ties based on entire soundscapes are still limited to very few sites. 
Lehmann et al. (2014) used ARUs in the Hymettos mountain 
range, Greece. Tropical Orthoptera communities have been as-
sessed in the Western Ghats, India (Diwakar et al. 2007), Panama 
(Schmidt et al. 2013) and Amazonian Ecuador, the latter based ex-
clusively on ethospecies (Riede 1993). Evidence that ethospecies 
can be reliably attributed to well-defined morphospecies was pro-
vided by systematic recording of captured individuals in Ecuado-
rian lowland and mountain rainforests (Nischk and Riede 2001).

There is a fundamental difference between: 1) automatic clas-
sification and identification of individual recordings, consisting of 
high-quality sound signals of an unknown Orthoptera songster, 
or; 2) recognition of Orthoptera songs “hidden” within overall 
soundscape recordings. The two problems are quite distinct, and 

Fig. 3. Embedding metadata within sound files. Metadata were embedded within wav and mp3 fields directly from the SYSTAX data-
base using Soundminer software (http://store.soundminer.com/). Metadata are visible within most mp3-players, displaying the species 
name as “TrackTitle” and the recordist as “Artist” (Courtesy: S. Ingrisch).

http://store.soundminer.com/
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the latter requires additional, complex processing steps. Therefore, 
they are discussed separately in the following sections.

Classification of individual recordings.—For individual recordings, 
song parameters such as pulse rate and carrier frequency can be 
easily extracted by basic sound analysis software. These param-
eters might be sufficient to identify species using a traditional 
taxonomic key (Ragge and Reynolds 1998, p.83) based on acous-
tic features. Benediktov (2015) analyzed a calling community of 
the orthopteran (Tettigoniidae and Gryllidae) community from 
an agrocenosis in eastern Bulgaria by straight-forward interpreta-
tion of spectrograms, showing that valuable information can be 
extracted from overall recordings “manually”, without complex 
computer algorithms. Such direct comparisons of song parameters 
with available feature datasets was classified as a “brute force” ap-
proach by Tacioli et al. (2017).

More complex software for Orthoptera song identification is 
based on Artificial Neural Networks (ANN) and Hidden Mark-
ov Models (HMM) which are widely used in automatic human 
speech recognition (Mustafa et al. 2017). Because ANNs have to 
be trained by a set of training recordings, and later be tested on 
another validation set, this approach is only possible for identifi-
cation of species with at least ten recordings of distinct specimens.

Dietrich et al. (2004) used ANNs and temporal fusion to clas-
sify 31 Orthoptera songs from the DORSA database (Ingrisch et al. 
2004). Potamitis et al. (2006) used the SINA repository and some 

additional resources to test automatic identification of insects us-
ing speech recognition tools. In a follow-up publication, Ganchev 
and Potamitis (2007) applied a hierarchic classification scheme, 
with identification accuracy that exceeded 99% at suborder and 
family levels. Chaves et al. (2012) used Costa Rican katydid songs 
from the Naskrecki (2000) CD for sound parameterization using 
Mel Frequency Cepstral Coefficients and subsequent classification 
based on HMM, resulting in high accuracy of identification.

Riede et al. (2006) annotated Grylloidea from the SYSTAX-DOR-
SA files with essential parameters such as carrier frequency and pulse 
rate. They applied a batch routine, using segmentation and feature 
extraction modules developed by Dietrich et al. (2004) to annotate 
song parameters for hundreds of recordings from 53 species.

 Tacioli et al. (2017) reviewed basic principles of existing ani-
mal sound identification software and implemented a user-friend-
ly, downloadable software (Wildlife Sound Identification Software 
(WASIS) http://www.naturalhistory.com.br/wasis.html). At pre-
sent, the underlying reference database contains recordings from 
Neotropical birds and amphibia, but it should be possible to use 
this promising approach for Orthoptera song recognition, as well. 

Data-mining soundscapes.—Identification of individual species in 
soundscapes is a much harder task because of noise and highly 
variable microphone distances from songsters. As a first step, Re-
gions of Interest (ROIs) – sound signals probably containing a 
song – have to be identified and filtered. In a second step, these 

Fig. 4. A data warehouse for sound management. The scheme illustrates elements and workflow for acoustic profiling of Orthoptera. 
Songs are sampled either by recording individual songsters (Targeted Recordings), or entire acoustic scenes, each of which could contain 
several Orthoptera songs. Targeted recordings are treated like specimens, with time and locality stamps and, preferably, a voucher speci-
men. All databases listed in Table 1 are designed to store individual recordings. These distributed databases could be federated via ABCD- 
or Darwin-protocol. Soundscapes require distinct data management of large multimedia files. Orthoptera songs could be extracted 
manually or semi-automatically as sound snippets, and eventually be identified (ID) manually, or using automatic sound recognition 
algorithms (ASR). Many snippets can be extracted from each scene, resulting in a one-to-many relationship between scenes and snippets.

http://www.naturalhistory.com.br/wasis.html
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ROIs can eventually be treated and classified like individual re-
cordings. A considerable number of publications report successful 
algorithmic identification of sets of bat (Jennings et al. 2008), bird 
(Potamitis et al. 2014), and frog (Hu et al. 2009) species within 
field recordings from certain sites. As with individual song recog-
nition software, these algorithms have to be trained, requiring a 
considerable number of training recordings, preferably from the 
respective area. 

Most recognition software was developed for birds, based 
on extensive corpora of overall soundscape recordings and high 
numbers of individual, labelled species recordings used for train-
ing and testing. Knight et al. (2017) provide an overview of un-
derlying principles and performance benchmarking of five readily 
available species recognition programs. Among these programs, 
the template-based MonitoR software (Katz et al. 2016) is particu-
larly promising, because it is a package implemented in R (https://
www.r-project.org/), a free software project becoming increasingly 
popular among biologists. In addition, R contains the seewave 
package (Sueur et al. 2008a), designed for sound analysis and syn-
thesis. Users familiar with R can modify or combine it with other 
R packages (Sueur 2018). Ovaskainen et al. (2018) developed 
Animal Sound Identifier (ASI), an interesting toolbox running 
on Matlab. Unlike most previous approaches, ASI locates training 
data directly from the field recordings and thus avoids the need for 
pre-defined reference libraries.

Phillips et al. (2018) present an impressive method of reduc-
ing audio data to six orders of magnitude, facilitating the interpre-
tation of environmental audio. By clustering vectors of acoustic 
indices, they were able to attribute clusters to dominant sound 
sources, such as birds, cicadas, or Orthoptera. They were able to 
determine Orthoptera calling date and time of day within a huge 
dataset of 26 months of recordings. With this pre-processing, it 
should be easy to extract relevant Orthoptera snippets and even-
tually store them as “ethospecies” (sensu Riede 1993) for future 
identification. 

To facilitate multiple use of sound files for improving algo-
rithms, the respective sound files should be tagged and labelled 
as a corpus. A wide variety of well-documented corpora is avail-
able to be used in computational linguistics and speech recogni-
tion. A speech corpus is a well-defined set of speech audio files 
(Harrington 2010), and a pre-requisite for reproducible results in 
classifier and recognizer development. Well-curated corpora are 
not yet available in bioacoustics (cf. Riede and Jahn 2013), which 
hampers progress of computer-aided analysis.

Discussion

Otte and Alexander (1983) were the first to point out the enor-
mous potential of communicative signal analysis for understand-
ing the systematics and taxonomy of Orthoptera:

“It must be clear at this point that those systematists who utilize com-
municative signals and isolating mechanisms as their principal means of 
locating and recognizing species are not simply studying biology as well 
as morphology, or simply using a wide variety of characters, as is com-
monly and justifiably considered desirable in bio-systematic work. Their 
entire approach, their methods of analysis, and their interpretations of 
particular kinds of data are all different. Further, and probably most 
important, their possibilities for rapid and accurate systematic cover-
age are unparalleled. For this reason, the groups of animals for which 
these techniques are possible ought to present unique opportunities for 
breakthroughs in biogeography and in the study of speciation and other 
evolutionary phenomena.” (l.c., p. 5). Three decades later, bioacous-

tic characters of Orthoptera songs frequently form part of species 
descriptions, taxonomic revisions (e.g. Anatolian Chorthippus spe-
cies: Mol et al. 2003), as well as phylogenetic studies (Desutter-
Grandcolas 2003, Nattier et al. 2011), being a well-established ele-
ment of a comprehensive, “integrative” taxonomy (Dayrat 2005, 
Schlick-Steiner et al. 2010).

To mobilize the full potential of sound repositories for biodi-
versity research, innovative query tools are needed. The vision is to 
upload a sound recording to a data warehouse portal and search 
for similar acoustic patterns, comparable to BLAST (Altschul et al. 
1990), available as a tool in genetic databases (e.g. NCBI). The po-
tential of such innovative tools will be further enhanced by feder-
ated access to distinct sound archives, using one portal with a uni-
fied query tool. As a next step, applications running on portable 
computers could allow classification and identification of songs 
in the field. Such an infrastructure sounds demanding, but its ele-
ments are already available.

Thanks to the rapid technological evolution of hard- and 
software, complex Artificial Intelligence tools for recognition of 
human speech, music and animal sounds are now available for 
personal devices such as smartphones. Commercial programs and 
apps such as Shazam (for music recognition: https://play.google.
com/store/apps/details?id=com.shazam.androidandhl=en_US) 
or Alexa (for human speech recognition https://play.google.com/
store/apps/details?id=com.amazon.dee.appandhl=de) are well-
known examples. Evidently, speech recognition is of considerable 
military and economic interest, which means that large parts of 
on-going research are not accessible to the research community. 
This might be the reason that animal sound recognition lags far 
behind the performance of the above-mentioned commercial 
products. 

PAM in combination with computer-aided algorithms could 
lead to major progress in species monitoring and discovery. Lo-
molino et al. (2015) highlight the potential of these ecoacoustic 
surveys for biogeography. However, most of the terabytes result-
ing from PAM are only used to calculate soundscape indices, to 
be used in landscape ecology (cf. Ross et al. 2018). Ferreira et al. 
(2018) compared six soundscape indices with sonotype richness 
in a species-rich Brazilian tropical savanna. A sonotype is equiva-
lent to the acoustic morphospecies (Aide et al. 2017) or ethospe-
cies (Riede 1993). It is recognizable as an individual vocalization, 
but not necessarily supported by a reliable species identification. 
Ferreira et al. (2018) showed that the majority of sonotypes could 
not be attributed to birds. They criticize the bias of several indices 
on avifauna and emphasize the need to include insects and anu-
rans in ecoacoustics.

While there has been considerable progress in bird song rec-
ognition and the labelling of large audio datasets, a comparable 
milestone has not yet been reached for Orthoptera. This is prob-
ably due to insufficient coverage in sound libraries. Orthoptera 
songs have been documented for less than 20% of described spe-
cies. Reference sound libraries are missing not only for tropical re-
gions, but are incomplete even for well-known faunas, e.g. North 
American grasshoppers, despite comprehensive literature includ-
ing detailed description of communication and spectrograms of 
songs (Otte 1981). In addition, complex software for training 
ANNs requires several recordings for each species. Therefore, for 
simple logical reasons, neither queries nor sophisticated software 
will produce useful results with reference libraries containing only 
1 or 0 recordings for each species.

It must be doubted that self-organizing scientific routine 
procedures will suffice to establish the necessary infrastructure 

https://www.r-project.org/
https://www.r-project.org/
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sketched here. A strong commitment for data sharing as part of 
good scientific practice is needed, preferably under the leadership 
of the respective scientific societies such as IBAC or the Orthop-
terists’ Society, together with representatives from major sound 
archives. The OSF (Cigliano et al. 2018) provides an authorita-
tive taxonomic backbone and tools for the upload and retrieval of 
sound files. At present, OSF database managers and editors of the 
Journal of Orthoptera Research encourage submission of sound 
files together with manuscripts, but there is no obligation. In con-
trast, submission of gene sequence data to the NCBI is a pre-req-
uisite for publication, resulting in rapid population of gene banks 
and impressive advances in molecular biology.

Despite promising first results, an efficient connection and 
data flow between sound archives, museum collections, advanced 
computational tools and users has not yet been established. Close 
cooperation of biologists with computer engineers is needed to 
cope with the data deluge generated by PAM. Again, well-curated 
and documented song libraries are a prerequisite to exploit bio-
acoustic Big Data for further biodiversity assessments.

Basically, an efficient acoustic sampling strategy should consist 
of the following components:
1.	 Protocols for standardized acoustic recording, at species and 

community level, using acoustic data loggers for autonomous 
long-term recordings.

2.	 Open access to and efficient management of sound recordings, 
song data, and voucher specimens, involving the Orthoptera 
Species File (OSF: Cigliano et al. 2018) as a taxonomic back-
bone, and the Global Biodiversity Information Facility (GBIF) 
for federation of distinct biodiversity multimedia databases.

3.	 An infrastructure for automatic analysis and song classification 
for on-the ground and web-based analysis, including web2.0 
applications for user communities and citizen science.

4.	 A strategic framework for future inventorying and monitoring 
efforts, including geographic priorities.

Components 1 and 3 involve the entire terrestrial bioacoustics 
research community, requiring considerable effort to overcome 
fragmentation between distinct bioacoustic subgroups, clustering 
around distinct taxa (e.g. frogs, birds, etc.). In contrast, 2 and 4 fo-
cus on Orthoptera and are feasible, eventually serving as a model 
for other species groups.

Conclusions

A recent commentary paper by Deichmann et al. (2018) en-
titled “It is time to listen” called for a systematic monitoring of 
rainforest soundscapes. Singing insects are the principal compo-
nent of these soundscapes. Orthoptera songs are characterized 
by well-defined signal parameters such as carrier frequency and 
pulse rate. Acoustic profiling techniques have much to offer, 
from rapid assessment and species discovery of acoustically ac-
tive species in remaining wilderness areas to continuous moni-
toring in managed landscapes. Their full potential can only be 
developed by cooperative data sharing. At present, an increased 
wealth of digitized bioacoustic data leads to confusing fragmen-
tation: without the creation of a data warehouse infrastructure, 
bioacousticians will lose an excellent opportunity to exploit po-
tential synergies from on-going soundscape monitoring initia-
tives and contribute to urgently needed biodiversity assessments. 
Likewise, without willingness for data sharing, the newly emerg-
ing field of ecoacoustics will generate fragmented soundscape 
monitoring projects. 
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